

Oxidationsreaktionen mit HOF sowie Addukte von HOF und HF mit Acetonitril

Oliver Dunkelberg^a, Alois Haas^{*a}, Martin Frank Klapdor^b, Dietrich Mootz^b, Wolfgang Poll^b und Evan Hugh Appelman^c

Lehrstuhl für Anorganische Chemie II der Ruhruniversität Bochum^a, D-44780 Bochum, Germany

Institut für Anorganische Chemie und Strukturchemie der Universität Düsseldorf^b, Universitätsstraße 1, D-40225 Düsseldorf, Germany

Chemistry Division, Argonne National Laboratory^c, Argonne, IL 60439, USA

Eingegangen am 16. Mai 1994

Key Words: Oxidation by HOF / Hypofluorous acid / Addition compounds of HOF and HF with acetonitrile

Oxidation Reactions with HOF and Adducts of HOF and HF with Acetonitrile

In acetonitrile solution HOF oxides CF_3SSCF_3 via $CF_3S(O)_nSCF_3$ (n = 1, 2) to yield $[CF_3S(O)_2]_2O$. Analogously, $CF_3Se(O)OH$ and CF_3SeX (X = Cl, Br) are oxidized via $CF_3Se(VI)$ intermediates to provide finally $[CF_3Se(O)_2]_2O$.

With CH_3CN at low temperatures HOF and HF form 1:1 adducts, whose structures have been elucidated by low-temperature X-ray structure analysis. Additional proof for the formation of $CH_3CN \cdot HF$ in the liquid phase is provided.

Nachdem gezeigt werden konnte, daß die oxidierende Substanz, die beim Einleiten von Fluor in wasserhaltiges Acetonitril entsteht, HOF ist, verstärkten sich aufgrund ¹⁹F-NMR- und IR-spektroskopischer Untersuchungen die Hinweise, daß HOF und CH₃CN bei tiefen Temperaturen ein stabiles 1:1-Addukt bilden^[1]. Ziel der vorliegenden Arbeit war die Ermittlung der Struktur dieses Addukts und zu Vergleichszwecken des entsprechenden Addukts CH₃CN · HF durch Tieftemperatur-Röntgenstrukturuntersuchungen sowie die Untersuchung der oxidierenden Eigenschaften von HOF gegenüber CF₃E-Verbindungen mit E = S und Se in den Oxidationsstufen I, II und IV.

Ergebnisse und Diskussion der Oxidationsreaktionen mit HOF

Die in Kel-F-NMR-Röhrchen durchgeführten Redoxreaktionen zwischen HOF und CF₃SSCF₃, gelöst in CH₃CN/ CD₃CN (1:1), lieferten nach Aufwärmen von -78 auf -50°C im Probenkopf Produkte, die im ¹⁹F-NMR-Spektrum breite Signale bei $\delta = -45.2, -46.2$ und -33.4 sowie mehrere Banden im Bereich von $\delta = -68$ bis -83 aufweisen. Nach etwa 15 min werden alle Verschiebungen wesentlich schmaler, und man kann im Rahmen der Meßgenauigkeit (die ungenügende Rotationssymmetrie des Röhrchens bedingt eine verschlechterte Auflösung) Singuletts erkennen. Hierbei ist das Signal bei $\delta = -45.2$ doppelt so intensiv wie bei -45.9. Gleiche Intensität und gleiche Integralfläche besitzen $\delta = -33.1$ und -67.7, so daß davon ausgegangen werden kann, daß beide Signale zu einer Verbindung gehören. Die in der Literatur für CF₃S(O)SCF₃^[2]

angegebenen Werte betragen $\delta(CF_3) = -33.1$ und δ [CF₃S(O)] = -69.5 und stimmen mit den hier gemessenen gut überein. Nach weiteren 15 min treten $[CF_3S(O)_2]_2O$, $\delta = -78.1$ (Lit.^[3] -76.6) und eine geringere Konzentration an $CF_3S(O)_2SCF_3$, $\delta[CF_3S(O)_2] = -74.9$, $\delta(CF_3S) =$ -35.2, Intensität 1:1 {Lit.^[4] δ [CF₃S(O)₂] = -76.8, $\delta(CF_3S) = -36.3$ auf. Zusätzlich sind Signale für CH₃CN · HOF ($\delta = -8.3$) und CH₃CN · HF ($\delta = -176.7$) zu verzeichnen. Nach weiteren 30 min beobachtet man Vorhandensein von CF₃SSCF₃, CF₃S(O)SCF₃, das CF₃S(O)₂SCF₃, [CF₃S(O)₂]₂O und den beiden Addukten, wobei die Mengen an [CF₃S(O)₂]₂O und CH₃CN · HF zunehmen. Mit steigender Reaktionsdauer (30 min) verändert sich das Spektrum nicht mehr. Temperaturerhöhungen in Intervallen von 5°C und Messungen nach jeweils 20 min brachten keine signifikanten Veränderungen. Ab -25°C war CH₃CN · HOF verbraucht, und es traten neben CF₃SSCF₃ sowie CH₃CN · HF noch die Signale von $CF_3S(O)_nSCF_3$ (n = 1, 2) und $[CF_3S(O)_2]_2O$ auf. Die zunächst bei -50°C abnehmende Konzentration an CF_3SSCF_3 ($\delta = -45.2$) nimmt gegen Ende der Reaktion -25°C in Folge der Disproportionierung von bei CF₃S(O)SCF₃ zu CF₃S(O)₂SCF₃ und CF₃SSCF₃ wieder zu. Nach 5 Tagen zeigt die Probe im ¹⁹F-NMR-Spektrum neben CF₃SSCF₃ und CH₃CN · HF nur noch die Verschiebungen von $[CF_3S(O)_2]_2O$ und etwas CF_3SO_3H , entstanden infolge Hydrolyse. Die Produkte $CF_3S(O)_nSCF_3$ hatten sich vollständig verbraucht. Durch {19F}-entkoppelte 13C-NMR-spektroskopische Untersuchungen ließen sich die getroffenen Zuordnungen bestätigen. Dieser Reaktionsverlauf

Chem. Ber. 1994, 127, 1871–1875 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009–2940/94/1010–1871 \$ 10.00+.25/0

läßt sich durch die in Gl. (1) aufgeführten Reaktionen wiedergeben. Während des gesamten Reaktionsablaufs trat ein Signal bei $\delta = -45.9$ bis -46.3 auf, das nicht zugeordnet werden konnte und erst nach 5 Tagen vollständig verschwand.

 $2 \operatorname{CF}_{3} \operatorname{SSCF}_{3} + 2 \operatorname{CH}_{3} \operatorname{CN} \cdot \operatorname{HOF} \longrightarrow 2 \operatorname{CF}_{3} \operatorname{S(O)} \operatorname{SCF}_{3} + 2 \operatorname{CH}_{3} \operatorname{CN} \cdot \operatorname{HF}$ $2 \operatorname{CF}_{3} \operatorname{S(O)} \operatorname{SCF}_{3} \longrightarrow \operatorname{CF}_{3} \operatorname{SSCF}_{3} + \operatorname{CF}_{3} \operatorname{S(O)}_{2} \operatorname{SCF}_{3} \qquad (1)$ $\operatorname{CF}_{3} \operatorname{S(O)}_{n} \operatorname{SCF}_{3} + 5 - n \operatorname{CH}_{3} \operatorname{CN} \cdot \operatorname{HOF} \longrightarrow [\operatorname{CF}_{3} \operatorname{S(O)}_{2}]_{2} \operatorname{O} + 5 - n \operatorname{CH}_{3} \operatorname{CN} \cdot \operatorname{HF}$ (n = 0, 1, 2)

Die Umsetzung von HOF mit CF₃Se(O)H im Molverhältnis 3:1 in CH₃CN führten zu Verbindungen, die sowohl im ¹⁹F- als auch im ⁷⁷Se-NMR-Spektrum δ -Werte zeigten, die eindeutig Se(VI)-Verbindungen zuzuordnen waren. Die im ¹⁹F-NMR bei $\delta = -69.1$ und im ⁷⁷Se-NMR bei $\delta =$ 1024.8 (q), ${}^{2}J_{(\text{Se-F})} = 132.4 \pm 0.4$ Hz, beobachteten Verschiebungen und Kopplungskonstanten werden durch $CF_3Se(O)_2OH$ hervorgerufen [Lit.^[5] $\delta(CF_3) = -69.0$, $\delta(^{77}\text{Se}) = 1021.5 \text{ (q)}, \, {}^{2}J_{(\text{Se-F})} = 129.3 \text{ Hz}].$ Daneben beobachtet man aber auch eine weitere, unbekannte CF₃Se(VI)-Verbindung mit $\delta(^{19}F) = -57.3$, $\delta(^{77}Se) = 1044.3$ (q) und ${}^{2}J_{(\text{Se-F})} = 139.5 \pm 0.4$ Hz. Die beiden δ -Werte und vor allem die Se-F-Kopplungskonstanten müssen von ein und derselben Verbindung stammen, da die getroffenen Zuordnungen durch Anwendung der INEPT-Technik NMR-spektroskopisch bestätigt wurden. Engt man die Lösung ein, so isoliert man als einziges Produkt [CF₃Se(O)]₂O. Ganz analog verlaufen Reaktionen von in CH_3CN gelöstem CF_3SeX (X = Cl, Br) mit HOF im Molverhältnis 1:1 und 3:1. Auch hier beobachtet man intermediär das Auftreten von CF₃SeO₃H und der unbekannten CF₃Se(VI)-Verbindung. Beim Einengen der Lösung fällt [CF₃Se(O)]₂O in reiner Form an. Eine Erklärung für die Bildung des Säureanhydrids wäre das Auftreten von CF₃Se(O)₂OOH, gebildet aus CF₃Se(O)₂OH und HOF, das beim Einengen in einer Redoxreaktion $[CF_3Se(O)_2]_2O$ gemäß Gl. (2) liefert. Die im Verhältnis 1:1 und 3:1 erfolgten Oxidationen von CF_3SeX (X = Cl, Br) mit HOF in CH₃CN/CD₃CN zeigten im Vergleich mit $CF_3Se(O)OH$ bis auf die Freisetzung von Cl_2 bzw. Br₂ völlig identische Ergebnisse.

Nachweis des Addukts CH₃CN · HF in flüssiger Phase

¹⁹F- und ¹H-NMR-spektroskopische Untersuchungen von CH₃CN/HF-Lösungen über den Konzentrationsbereich 0 bis 100% HF zeigen im Gegensatz zu den entsprechenden ¹³C-NMR-Spektren eine starke Abhängigkeit der chemischen Verschiebung von dem Molverhältnis der Lösungen. Die δ-Werte im Bereich von 0 bis 50 Mol-% HF unterscheiden sich von denen des Bereichs von 50 bis 100 Mol-%, wie aus Abb. 1 und 2 hervorgeht. Sowohl die ¹⁹Fals auch die ¹H-NMR-Verschiebungen bleiben bis zu 50-Mol-% HF (in Abb. 2 mit Einschränkungen) nahezu konstant, über 50 Mol-% verändern sich die Verschiebungen hingegen stetig. Dieses Verhalten läßt sich unter der Annahme deuten, daß sich der erhaltene Shift aus zwei Einzelkomponenten additiv zusammensetzt, nämlich aus einem Shift für gebundenes und einem für freies HF.

Abb. 1. $\delta(^{19}F)$ von HF in CH₃CN in Abhängigkeit von der Konzentration

Abb. 2. $\delta(^{1}H)$ von HF in CH₃CN in Abhängigkeit von der Konzentration

Aus der Tatsache, daß bei Konzentrationen von über 50 Mol-% HF sich das Verhalten der chemischen Verschiebung derart gravierend ändert, kann auf die Existenz eines 1:1-Addukts (CH₃CN · HF) in flüssigem Zustand geschlossen werden. Allerdings ist die gefundene Abschirmung des Fluors auf den ersten Blick überraschend. Normalerweise sollte man erwarten, daß $\delta(^{19}F)$ der Lewis-Säure HF durch die Lewis-Base CH₃CN aufgrund der erhöhten Elektronendichte am Fluor-Atom eine Hochfeldverschiebung erfährt. Tatsächlich beobachtet man aber einen Tieffeldshift im Ver-

gleich zu reinem nicht komplexiertem HF. Dieser Sachverhalt kann dadurch erklärt werden, daß reines HF über Wasserstoffbrücken intermolekular verbrückt ist. Daraus ergibt sich eine Erhöhung der Elektronendichte am Fluor und eine Erniedrigung am Wasserstoff-Atom. Im Falle einer Komplexierung von HF durch CH₃CN werden (zumindestens bei Konzentrationen kleiner als 50 Mol-% HF) die Wasserstoffbrücken F-H-F aufgespalten und durch solche vom Typ F-H...N ersetzt. Die Veränderung des Assoziationsgrads von reinem HF erklärt auch, wie aus Abb. 1 hervorgeht, den Verlauf der ¹⁹F-NMR chemischen Verschiebung bei Konzentrationen über 50 Mol-% HF. Die Abschirmung des Wasserstoffatoms von HF im Addukt CH₃CN · HF ist höher als in reinem, intermolekular assoziiertem HF (s. Tab. 1 und 2). Dies entspricht der erwarteten N…H-Wechselwirkung.

Tab. 1. Einfluß von CH₃CN auf die δ-Werte von HF bei 20°C

HF	HF ^[s]	HF ^[b]	CH ₃ CN ^[b]	CH ₃ CN ^[b]
[mol-%]	δ(¹⁹ F)	δ(¹ H)	δ(¹ H)	δ(¹³ C)
0	-	-	1.93	118.31
10	-182.02	7.23	1.96	118.31
20	-181.86	7.31	2.00	118.32
30	-182.18	7.36	2.02	118.31
40	-181.97	7.48	2.03	118.31
45	-182.96	7.64	2.04	118.31
50	-182.95	7.68	2.05	118.32
55	-184.51	7,70	2.05	118.33
60	-184.43	8.08	2.08	118.32
70	-186.09	8.34	2.10	118.32
80	-187.62	8.54	2.11	118.33
90	-189.39	8.76	2.15	118.33
100	-195.37	7.79[6]	-	

 $^{[a]}$ Chem. Verschiebung gegen $CFCl_3$ gemessen. – $^{[b]}$ Chem. Verschiebung gegen TMS gemessen. – $^{[c]}$ Wert mit Unsicherheit behaftet, da TMS durch HF zersetzt.

Tab. 2. Einfluß von SO₂ClF auf die δ-Werte von HF bei 20°C

HF [mol-%]	ΗF ^[4] δ(¹⁹ F)	${}^{\text{SO}_2\text{CIF}^{[a]}}_{\delta(^{19}\text{F})}$	HF ^[b] δ(¹ H)
0	_	99.8	-
10	-193.72	99.8	7.44
20	-193.94	99.7	7.42
30	-193.96	99.8	7.40
40	-193.97	99.8	7.44
50	-193.94	99.8	7.48
60	-193.89	99.7	7.52
70	-193.73	99.6	7.61
80	-193.91	99.8	7.49
90	-194.75	99.3	7.53 ^[c]
100	-194.27	-	7.59 ^[c]

^[a] Chem. Verschiebung gegenüber CFCl₃ gemessen. – ^[b] Chem. Verschiebung gegenüber TMS gemessen. – ^[c] Wert mit Unsicherheit behaftet, da TMS durch HF zersetzt.

Zur Überprüfung obiger Interpretation der NMR-Daten wurden Lösungen von HF in einem unpolaren Lösungsmittel untersucht. Als besonders geeignet erwies sich SO₂ClF, da HF darin über den gesamten Konzentrationsbereich re-

Chem. Ber. 1994, 127, 1871-1875

lativ gut löslich ist. Sowohl die ¹⁹F-NMR-Spektren von SO₂ClF als auch die ¹H- und ¹⁹F-NMR-Spektren von HF (s. Tab. 2) ergaben, daß die δ (¹⁹F)-Werte für SO₂ClF und HF über den gesamten Konzentrationsbereich nahezu konstant bleiben. Lediglich die ¹H-NMR-Verschiebungen von HF in SO₂ClF zeigen geringfügige Änderungen, die auf die Verbreiterung der NMR-Signale aufgrund unzureichender Rotationssymmetrie des verwendeten Kel-F-Rohrs oder auf die Reaktionen von TMS mit HF zurückzuführen sind.

Geht man in Analogie zu Job^[6] davon aus, daß der resultierende ¹⁹F-NMR-Shift sich aus dem ¹⁹F-NMR-Shift des CH₃CN · HF-Komplexes und dem von HF in unkomplexiertem Zustand gemäß Gl. (3) additiv zusammensetzt (wobei M der Molenbruch von unkomplexiertem zu komplexiertem HF ist), kann man aus den gemessenen δ ⁽¹⁹F)-Werten einer Lösung von CH₃CN · HF in SO₂ClF in Abhängigkeit von der Temperatur bei Kenntnis des Mischungsverhältnisses die Bildungsenthalpie des Komplexes bestimmen. Die gemessenen Werte sind in Tab. 3 zusammengefaßt. Der Wert für die Komplexierungsenthalpie beträgt -59.8 kJ/mol. Aufgrund der Ungenauigkeit der δ-Werte von HF komplexiertem und reinem Zustand haben die hier berechneten Daten nur semi-quantitative Gültigkeit. Trotzdem geben sie wichtige Anhaltspunkte im Vergleich mit denen des CH₃CN · HOF-Adduktes, das eine Komplexierungsenthalpie von $-14.3 \pm 0.5 \text{ kJ/mol}^{[1]}$ aufweist. Es kann demnach gezeigt werden, daß der CH₃CN · HF-Komplex deutlich stabiler ist als das CH₃CN · HOF-Addukt.

$$\delta(\text{result.}) = M \cdot \delta_{\text{Komplex}} + (1 - M)\delta_{\text{HF}}$$
(3)

Tab. 3. Einfluß der Temperatur auf die Komplexierung von CH_3CN/HF in $SO_2ClF^{[a]}$

T	HF ^[b]		K _{ber}
[K]	δ(¹⁹ F)	[mol·l ⁻¹] ^[c]	[mol·l ⁻¹] ^[d]
198	-180.91	59000.0	10757.0
203	-181,19	4482.0	4401.0
208	-181.43	1681.0	1 877 .0
213	-181.68	841.7	833.7
218	-181.92	511.5	384.2
223	-182.19	323,4	183.3
228	-182.44	226.3	90.3
233	-182.64	177.1	45.9
238	-182.90	132.7	23.9
243	-183.14	104.6	12.9
248	-183.40	82.7	7.1
253	-183.66	66.7	4.0
258	-183.92	54.6	2.3
263	-184.17	45.7	1,4
268	-184.41	38.9	0.8
273	-184,64	33.4	0.2

^[a] [CH₃CN] = 0.25 mol/l; [HF] = 0.25 mol/l. – ^[b] Chem. Verschiebung gegenüber CFCl₃ gemessen. – ^[c] Gleichgewichtskonstante für Komplexierungsgleichgewicht HF + CH₃CN \Rightarrow CH₃CN · HF, berechnet aus Gl. (3) mit $\delta_{\rm HF} = -194.0$ und $\delta_{\rm Komplex} = -180.8$. – ^[d] Wert durch nichtlineare Regression angepaßt mit Hilfe der "least-squares analysis", wobei ein Gauß-Newton-Algorithmus von Jennrich und Sampson benutzt wurde; nichtlineare Regression lautet: $\ln K_{\rm ber} = -27.05 + 7194/T$.

Kristallstrukturen der Addukte $CH_3CN \cdot HF$ und $CH_3CN \cdot HOF$

Die in Lösung nachgewiesenen Addukte $CH_3CN \cdot HF$ und $CH_3CN \cdot HOF$ wurden durch orientierende DTA-Messungen an Proben mit ca. 35–65 Mol-% CH_3CN auch als eigenständige feste Phasen verifiziert. Einkristalle wurden in situ im Kaltgasstrom eines Tieftemperatur-Diffraktometers erhalten. Die Messungen bei –130 und –150°C und ihre Auswertungen ergaben entsprechend den schon benutzten Formeln Addukte molekularen Aufbaus (Abb. 3). Das HF- und das HOF-Molekül bilden eine Wasserstoffbrücke $F-H\cdots N$ bzw. O $-H\cdots N$ so zum CH_3CN -Molekül, daß an dessen N-Atom jeweils eine weitgehend lineare Konfiguration resultiert. Mit Ausnahme des (zweifach fehlgeordneten) F-Atoms im HOF-Addukt und der Methylprotonen H(2) und H(2') liegen alle Atome auf der Spiegelebene der jeweiligen Raumgruppe.

Verglichen mit den häufiger zu beobachtenden Wasserstoffbrücken N-H···F mit Abständen N···F von meistens 2.7-2.9 Å ist die seltene Brücke F-·H···N im HF-Addukt mit 2.585 Å als deutlich stärker einzustufen. Eine mit 2.47 Å noch kürzere Brücke dieses Typs findet sich im kristallinen Addukt Pyridin · HF^[7]. Die Brücke O-·H···N im HOF-Addukt ist mit 2.81 Å von normaler Länge. Die Geometrie des CH₃CN-Moleküls^[8] erscheint durch die Wasserstoffbrücken nicht signifikant verändert. Die Verkürzung des O-F-Abstands von 1.442 Å in der Kristallstruktur von HOF allein^[9] auf 1.30 Å im Addukt mit CH₃CN ist wahrscheinlich durch die hier vorliegende Fehlordnung des F-Atoms verursacht.

Abb. 3. Die Addukte CH₃CN · HF (oben) und CH₃CN · HOF (unten, mit zweifacher Fehlordnung des F-Atoms): Darstellung je einer Formeleinheit aus den Kristallstrukturen mit 30-%-Ellipsoiden, interatomaren Abständen in Å und Winkeln [°]; die Wasserstoffbrückenabstände N…F und N…O sind unterstrichen; die mit ' gekennzeichneten Atome ergeben sich durch Spiegelung aus den entsprechenden Atomen der asymmetrischen Einheit

Dem Ministerium für Wissenschaft und Forschung (NRW) danken wir für die finanzielle Unterstützung dieser Arbeit.

Experimenteller Teil

Achtung! Alle Umsetzungen mit HOF können oberhalb -40° C zu Explosionen führen. Mit oxidierbaren Substanzen umgesetzt, können Explosionen auch schon bei -78° C erfolgen. Zur Vermeidung von Bränden dürfen nur nichtbrennbare Lösungsmittel zur Herstellung von Kühlbädern verwendet werden. Im Verlauf der Arbeiten hat sich gezeigt, daß die Lautstärke von Explosionen, hervorgerufen durch geringste Mengen an HOF (z.B. 1 µl einer 50 Mol-proz. HOF/CH₃CN-Lösung), zu ernsten Gehörschäden führen kann. In Gegenwart oxidierbarer Substanzen ist HOF in der Lage, offene Gefäße aus dünnwandigem Edelstahl zum Bersten zu bringen. Unabdingbare Voraussetzung im Umgang mit HOF sind daher Schutzmaßnahmen wie z.B. das Tragen von Gesichtsvollschutz, Lederhandschuhen und -schürze und Gehörschutz! Außerdem sollten Ansätze nur mit 5–10 mmol HOF durchgeführt werden.

NMR: Bruker WM 250 (¹H, ¹³C, ¹⁹F, ⁷⁷Se), interne Locksubstanz CD₃CN. Interne Standards: ¹H, ¹³C: CD₃CN, Werte auf TMS umgerechnet; ¹⁹F: CFCl₃. Negatives Vorzeichen bedeutet Hochfeldverschiebung. Wenn nicht anders angegeben, werden alle Messungen bei 20°C durchgeführt. – MS: Varian MAT-CH7, 70 eV, Emission 100 mA oder HP-MS-Engine mit CI (CH₄) und Direkteinlaß. Bei Fragmenten mit Isotopenverteilungsmuster wird nur der intensivste Peak aufgeführt.

Einkristallzüchtung: Flüssige, ungefähr äquimolare Mischungen aus CH₃CN und HF oder HOF wurden in Schlauchstücke aus Polyethylen bzw. Teflon PFA mit ca. 20 mm Länge und 0.4 bzw. 0.3 mm Innendurchmesser abgefüllt, in letzterem Fall bei Temperaturen unterhalb von -50°C zur Verhinderung des explosiven Zerfalls. Die Schlauchstücke wurden zugeschmolzen und zur mechanischen Fixierung in ebenfalls so verschlossenen Lindemann-Kapillaren auf einem Diffraktometer mit Tieftemperaturzusatz montiert. Die Kristallzucht der Addukte erfolgte für CH3CN · HF durch ein Miniatur-Zonenschmelzverfahren^[10], für CH₃CN · HOF durch Kühlungskristallisation. Diese war schwierig, da in den betreffenden Proben stets eine Verunreinigung von HF enthalten war und Kristalle zudem nur in Form sehr kleiner, dünner Blättchen anfielen. Die nur mäßige Kristallqualität spiegelt sich in einer gegenüber dem HF-Addukt geringeren Genauigkeit der Strukturbestimmung wider.

Röntgenstrukturanalyse von CH₃CN · HF^[11]: $M_r = 61.1$ g/mol; monoklin, Raumgruppe P2₁/m; Z = 2; a = 4.092(2), b = 5.825(3), c = 7.184(4) Å, β = 90.97(4)°, V = 171.3(2) Å³; D_{ber.} = 1.184 g/ cm³; Diffraktometer Siemens/Stoe AED2 mit Tieftemperaturzusatz, Mo-K_α-Strahlung (λ = 0.71073 Å), Graphitmonochromator; Meßtemperatur -130°C, 2Θ-Bereich: 3-65°, ω:Θ-Scan, Indexbereich: -6 ≤ h ≤ 0, 0 ≤ k ≤ 8, -10 ≤ l ≤ 10; 676 unabhängige Reflexe, davon wurden 670 mit $F^2 > -3\sigma(F^2)$ für die Verfeinerung verwendet. Strukturlösung mit Direkten Methoden (SHELXS-86^[12]); Full-Matrix-Verfeinerung mit F^2 (SHELXL-93^[13]), Nichtwasserstoffatome anisotrop, Wasserstoffatome isotrop; Gewichtungsschema: $w^{-1} = \sigma^2(F_o^2) + (0.0440 \cdot P)^2 + 0.0263 \cdot P$ mit $P = (F_o^2 + 2 \cdot F_c^2)/3; R(F^2) = 0.1372, R(|F|) [|F|>4σ(F)] = 0.0443,$ Restelektronendichte -0.25/0.19 e/Å³.

Röntgenstrukturanalyse von $CH_3CN \cdot HOF^{[11]}$: $M_{\tau} = 77.1$ g/mol; rhombisch, Raumgruppe Pbcm; Z = 4; a = 4.474(2), b = 15.149(8), c = 5.975(5) Å, V = 405.0(4) Å³, $D_{ber.} = 1.264$ g/cm³; Diffraktometer Siemens/Stoe AED2 mit Tieftemperaturzusatz, Mo- K_a -Strahlung ($\lambda = 0.71073$ Å), Graphitmonochromator; Meßtemperatur -150°C, 2 Θ -Bereich: $3-50^\circ$, ω : Θ -Scan, Indexbereich: $-5 \le h \le 5$, $-18 \le k \le 0$, $-7 \le l \le 0$; 391 unabhängige Reflexe, davon wurden 388 mit $F^2 > -3\sigma(F^2)$ für die Verfeinerung verwen-

Chem. Ber. 1994, 127, 1871-1875

det. Strukturlösung mit Patterson-Funktion (SHELXS-86^[12]); Full-Matrix-Verfeinerung mit F² (SHELXL-93^[13]), Nichtwasserstoffatome anisotrop, Wasserstoffatome isotrop mit fixierten U-Werten; Gewichtungsschema: $w^{-1} = \sigma^2(F_0^2) + (0.0512 \cdot P)^2 +$ $0.3589 \cdot P$ mit $P = (F_0^2 + 2 \cdot F_c^2)/3$; Extinktionskorrektur: x =0.13(3), $R(F^2) = 0.2185$, R(|F|) $[|F| > 4\sigma(F)] = 0.0769$, Restelektronendichte -0.28/0.20 e/Å³.

Umsetzungen von HOF mit CF_3SSCF_3 . – a) Molverhältnis 1:1: In einem Kel-F-NMR-Rohr mit Teflonventil werden 180 mg (5.0 mmol) HOF mit 1.0 g (22.7 mmol) CD₃CN sowie 1.0 g (24.4 mmol) CH₃CN kondensiert und bei -40°C gemischt. Anschließend wird auf -196°C gekühlt, und 1.0 g (5.0 mmol) CF₃SSCF₃ sowie 20 mg CFCl3 werden kondensiert. Dieses Gemisch wird im festen Zustand bei -78°C in den Probenkopf gebracht und langsam auf -50°C erwärmt. Der Reaktionsverlauf wird zunächst bei -50°C in Abständen von 15, 30, 60 und 90 min ¹⁹F-NMR-spektroskopisch verfolgt. Nach 90 min bei - 50°C kommt die Umsetzung zum Stillstand. Anschließend werden Temperaturerhöhungen um 5°C und Messungen nach 20 min vorgenommen. Die letzte Messung erfolgt bei -25°C; dann wird kontinuierlich auf 25°C erwärmt, die Probe ¹⁹F-NMR-spektroskopisch vermessen und nach 5 d die Messung wiederholt. Ergebnisse der ¹⁹F-NMR-Spektren werden im theoretischen Teil angegeben und diskutiert. - {19F}-entkoppelte 13C-NMR-Spektren: CF₃SSCF₃: $\delta = 128.8$ (q, ${}^{1}J_{(C-F)} = 315.3 \pm 0.5$ Hz; Lit.^[2] $\delta = 128.5$, ${}^{1}J_{(C-F)} = 313.7$ Hz). - $[CF_{3}S(O)_{2}]_{2}O$: $\delta =$ 121.4 (q, ${}^{1}J_{(C-F)} = 317.3 \pm 0.5$ Hz; Lit.^[14] $\delta = 123$). - CF₃SO₃H: $\delta = 121.1 \text{ (q, } {}^{1}J_{(C-F)} = 318.5 \pm 0.5 \text{ Hz; Lit.} {}^{[15]} \delta = 118.7, {}^{1}J_{(C-F)} =$ 316.8 Hz).

b) Molverhältnis 3:1: Analog werden 270 mg (7.5 mmol) HOF mit 500 mg (2.5 mmol) CF₃SSCF₃ bei -40°C umgesetzt. Hierbei entsteht Sauerstoff, der nach Einfrieren des Gemisches bei -196°C massenspektroskopisch nachgewiesen werden konnte. Das bei 20°C nach 2 h vermessene Reaktionsgemisch zeigte im ¹⁹F-NMR-Spektrum Signale bei $\delta = -45.2$ (CF₃SSCF₃), -78.0 [(CF₃SO₂)₂O] und -35.5 sowie 75.0 (CF₃SO₂SCF₃).

Reaktion von $CF_3Se(O)OH$ mit HOF: In einem einseitig offenem PFA-Rohr wird zu 210 mg (1.2 mmol) CF₃Se(O)OH unter Schutzgas eine Lösung von 130 mg (3.6 mmol) HOF in 2.0 g CD₃CN/ CH₃CN gegeben. CF₃Se(O)OH löst sich allmählich auf, und die Reaktionsmischung wird ¹⁹F- und ⁷⁷Se-NMR-spektroskopisch untersucht. Ergebnisse werden im theoretischen Teil diskutiert. Nach beendeter Reaktion werden die flüchtigen Bestandteile abgetrennt und der Rückstand wird i. Vak. getrocknet. Ausb. 100 mg (48%) $[CF_3Se(O)]_2O. - CF_3SeO_2OH: {}^{13}C-NMR \{ {}^{19}F - 71.0 \}$ INEPT: $\delta =$ 123.1 (q, ${}^{1}J_{(C-F)} = 352.3 \pm 0.3$ Hz; Lit.^[16] $\delta = 121.9$, ${}^{1}J_{(C-F)} \sim 330$ Hz, gemessen in wäßriger Lösung). - CF₃SeO₂OOH: ¹³C-NMR{¹⁹F -56.8} INEPT: $\delta = 126.3$ (q, ${}^{1}J_{(C-F)} = 362.9 \pm 0.3$ Hz). $- CF_3Se(O)_2]_2O$: ¹⁹F-NMR: $\delta = -66.4$. - MS (EI, 70 eV) m/z (%): 277 (32), 208 (8), 165 (23), 149 (16), 96 (58), 80 (29), 69 (100), 50 (18). – MS (CI, CH₄), m/z (%): 347 (100) [M⁺ + 1], 362 $(34) [M^+ + CH_4].$

Umsetzungen von $CF_3SeX(X = Cl, Br)$ mit HOF. – a) Molverhältnis 1:1: In einem Gemisch aus 1.0 g CH₃CN und 1.0 g CD₃CN werden 130 mg (3.6 mmol) HOF in einem Kel-F-NMR-Rohr mit Teflonventil bei -40°C gelöst, die Lösung wird auf -196°C gekühlt und anschließend mit 660 mg (3.6 mmol) CF₃SeCl bzw. 820 mg (3.6 mmol) CF₃SeBr überschichtet. Die Mischungen werden auf 20°C erwärmt, wobei sie sich gelb bzw. rotbraun verfärben. Eine codestillative Abtrennung der flüchtigen Bestandteile mit anschließender massenspektroskopischer Charakterisierung der Fraktionen ergab neben CH₃(D₃)N nur noch Cl₂ bzw. Br₂. Die bei 20°C aufgenommenen ¹⁹F-NMR-Spektren waren mit den oben angegebenen identisch.

b) Molverhältnis 3:1. Die analog durchgeführten Umsetzungen von 130 mg (3.6 mmol) HOF mit 220 mg (1.2 mmol) CF₃SeCl bzw. 270 mg (1.2 mmol) CF₃SeBr führten zu den bereits angegebenen Resultaten. Werden die Lösungen zur Trockene eingedampft, so beobachtet man in beiden Fällen das Auftreten von 90 mg (48%) bzw. 110 mg (53%) [CF₃Se(O)₂]₂O.

Herstellung von CH₃CN/HOF-Lösungen unterschiedlicher Konzentration: Zur Gewinnung von Einkristallen von CH3CN · HOF für die Röntgenstrukturanalyse wurden zwei Lösungen von HOF in CH₃CN unterschiedlicher Konzentration zubereitet. Hierzu wurden ca. 900 mg (ca. 25 mmol) HOF zu 820 mg (20.0 mmol) bzw. 1230 mg (30.0 mmol) CH₃CN kondensiert. Zur genauen Bestimmung des HOF-Gehalts wurden von beiden Lösungen ein aliquoter, geringer Teil mit KI versetzt und das entstehende Iod mit einer 0.1 N Na₂S₂O₃-Lösung zurücktitriert. Die beiden Lösungen werden bei tiefer Temperatur unter Schutzgas in einem derartigen Verhältnis gemischt, daß eine 50 mol-proz. Lösung von HOF in CH₃CN entsteht

CH₃CN/HF-Lösungen: Die für die NMR- und schwingungsspektroskopische Untersuchungen sowie die zur Herstellung von Einkristallen von CH₃CN · HF für die Röntgenstrukturanalyse benötigten Proben von CH₃CN/HF-Gemischen unterschiedlicher Konzentration wurden in einem PFA-Rohr mit aufgesetztem PTFE-Nadelventil durch Kondensation entsprechender Mengen HF und CH₃CN i.Vak. hergestellt. Beim Auftauen der Gemische trat eine starke Wärmeentwicklung auf. Das Addukt CH₃CN · HF hatte einen süßlichen, karamelartigen Geruch und zeigte keine an einer Nebelbildung erkennbare Freisetzung von HF.

- ^[1] E. H. Appelman, O. Dunkelberg, M. Kol, J. Fluorine Chem. **1992**, *56*, 199–215.
- [2] W. Gombler, Angew. Chem. 1977, 89, 740; Angew. Chem. Int. Ed. Engl. 1977, 16, 723
- ^[3] R. A. De Marco, J. M. Shreeve, Inorg. Chem. 1973, 12, 1896-1899
- P. J. Stang, T. E. Dueber, Org. Synth. 1974, 54, 79-84.
- [5] A. Haas, H.-U. Weiler, Chem. Ber. 1985, 118, 943-951. [6]
- P. Job, J. Chim. Phys. **1926**, 23, 553–554. D. Boenigk, D. Mootz, J. Am. Chem. Soc. **1988**, 110, [7] 2135-2139.
- ^[8] M. Barrow, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37, 2239-2242.
 ^[9] W. Poll, G. Pawelke, D. Mootz, E. H. Appelman, Angew. Chem. Chem. Line Ed. Long. Chem. Line Ed. Evol. 1989, 27
- 1988, 100, 425-426; Angew. Chem. Int. Ed. Engl. 1988, 27,
- ^[10] D. Brodalla, D. Mootz, R. Boese, W. Osswald, J. Appl. Crystallogr. 1985, 18, 316-319.
- ^[11] Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-380033 für CH₃CN · HF und CSD-380034 für CH₃CN · HOF, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[12] G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 467-473
- ^[13] G. M. Sheldrick, J. Appl. Crystallogr., Manuskript in Vorberei-
- tung. ^[14] Y. Yamamoto, T. Nakada, H. Hemoto, J. Am. Chem. Soc. 1992, 114, 121–125.
- ^[15] W. Gombler, unveröffentlichte Ergebnisse.
- ^[16] H.-U. Weiler, Dissertation, Univ. Bochum, 1978.

[179/94]